14 research outputs found

    Comparative Analysis of Thermal Unit Control Methods for Sustainable Housing Applications

    Get PDF
    This study aims to develop different control strategies for application to nonlinear model of a thermal unit and compare their performances as an advanced thermal control methods for HVAC applications of sustainable buildings. The mathematical description of thermal unit was obtained exploiting a data-driven and physically meaningful nonlinear continuous-time model, which represents a test-bed used in passive air conditioning for sustainable housing applications. The presented controller strategies use both inside temperature and air flow control in the thermal unit. The proposed control schemes were assessed with extensive simulations and Monte-Carlo analysis in the presence of modelling and measurement errors. The contribution of this work consists of providing an application example of the design and testing through simulations, of a data-driven thermal unit control. Furthermore, this study provides an insight into different control strategies in air conditioning systems and helps the practitioners and HVAC learners to design proper controller solutions

    Parameter estimation of the fractional-order Hammerstein–Wiener model using simplified refined instrumental variable fractional-order continuous time

    Get PDF
    © 2017 The Authors. Published by IET. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1049/iet-cta.2017.0284This study proposes a direct parameter estimation approach from observed input–output data of a stochastic single-input–single-output fractional-order continuous-time Hammerstein–Wiener model by extending a well known iterative simplified refined instrumental variable method. The method is an extension of the simplified refined instrumental variable method developed for the linear fractional-order continuous-time system, denoted. The advantage of this novel extension, compared with published methods, is that the static output non-linearity of the Wiener model part does not need to be invertible. The input and output static non-linear functions are represented by a sum of the known basis functions. The proposed approach estimates the parameters of the linear fractional-order continuous-time subsystem and the input and output static non-linear functions from the sampled input–output data by considering the system to be a multi-input–single-output linear fractional-order continuous-time model. These extra inputs represent the basis functions of the static input and output non-linearity, where the output basis functions are simulated according to the previous estimates of the fractional-order linear subsystem and the static input non-linear function at every iteration. It is also possible to estimate the classical integer-order model counterparts as a special case. Subsequently, the proposed extension to the simplified refined instrumental variable method is considered in the classical integer-order continuous-time Hammerstein–Wiener case. In this paper, a Monte Carlo simulation analysis is applied for demonstrating the performance of the proposed approach to estimate the parameters of a fractional-order Hammerstein–Wiener output model

    Performance Analysis of Data-Driven and Model-Based Control Strategies Applied to a Thermal Unit Model

    Get PDF
    The paper presents the design and the implementation of different advanced control strategies that are applied to a nonlinear model of a thermal unit. A data-driven grey-box identification approach provided the physically–meaningful nonlinear continuous-time model, which represents the benchmark exploited in this work. The control problem of this thermal unit is important, since it constitutes the key element of passive air conditioning systems. The advanced control schemes analysed in this paper are used to regulate the outflow air temperature of the thermal unit by exploiting the inflow air speed, whilst the inflow air temperature is considered as an external disturbance. The reliability and robustness issues of the suggested control methodologies are verified with a Monte Carlo (MC) analysis for simulating modelling uncertainty, disturbance and measurement errors. The achieved results serve to demonstrate the effectiveness and the viable application of the suggested control solutions to air conditioning systems. The benchmark model represents one of the key issues of this study, which is exploited for benchmarking different model-based and data-driven advanced control methodologies through extensive simulations. Moreover, this work highlights the main features of the proposed control schemes, while providing practitioners and heating, ventilating and air conditioning engineers with tools to design robust control strategies for air conditioning systems

    Design of delayed fractional state variable filter for parameter estimation of fractional nonlinear models

    Get PDF
    This paper presents a novel direct parameter estimation method for continuous-time fractional nonlinear models. This is achieved by adapting a filter-based approach that uses the delayed fractional state variable filter for estimating the nonlinear model parameters directly from the measured sampled input–output data. A class of fractional nonlinear ordinary differential equation models is considered, where the nonlinear terms are linear with respect to the parameters. The nonlinear model equations are reformulated such that it allows a linear estimator to be used for estimating the model parameters. The required fractional time derivatives of measured input–output data are computed by a proposed delayed fractional state variable filter. The filter comprises of a cascade of all-pass filters and a fractional Butterworth filter, which forms the core part of the proposed parameter estimation method. The presented approaches for designing the fractional Butterworth filter are the so-called, square root base and compartmental fractional Butterworth design. According to the results, the parameters of the fractional-order nonlinear ordinary differential model converge to the true values and the estimator performs efficiently for the output error noise structure

    Flexible RollScann-design of one-tooth-roll-master and simulations for data acquisition

    No full text
    corecore